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Estimating the escape zone for a parametrically excited pendulum-type equation
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This paper derives theoretical results for determining bifurcation curves which provide bounds on antici-
pated ‘‘escape’’ regimes in a two-dimensional parameter space for an equation which is a natural extension of
a commonly used second-order parametrically excited nonlinear pendulum equation. An application of these
results is made for an equation which often arises in smectic liquid-crystal problems. The results for this
application are more refined yet qualitatively similar to those obtained by different methods reported in the
literature.

PACS number~s!: 05.45.2a, 61.30.Cz
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I. INTRODUCTION

A study will be made of the equation

f̈12jḟ1@11p cos~vt !#@sinf1a sin~2f!#50,
~1.1!

wherej, p, v, anda are constants andf is a time-dependen
function which has its derivative with respect to time d
noted by a superposed dot. Equation~1.1! for aÞ0 is moti-
vated by the dynamic equations which often appear in
smectic liquid-crystal literature that have sinusoidal nonl
earities similar to the double sine-Gordon equation. A sh
summary of such equations may be found in Stewart@1# and
in the articles mentioned below as they become relevant.
usual parametrically excited pendulum equation is recove
from Eq.~1.1! by settinga50. The analysis employed below
is motivated by the work of Clifford and Bishop@2# and
Capecchi and Bishop@3# who considered the parametrical
excited pendulum form of Eq.~1.1! for small fixed j.0
when a50; a harmonic balance criterion was used for d
termining approximations for the location of an ‘‘escape
region in the correspondingp, v plane. For many applica
tions it is known that predicting parameter regions where
major stable nonrotating orbits exist is of primary impo
tance and under these circumstances the parametrically
cited pendulum is analogous to a system that allows esc
from a potential well. Escape parameter regions and cha
behavior have been studied extensively for the param
cally excited pendulum@2–7# and it is our aim to extend
these basic ideas to Eq.~1.1! for fixed j andaÞ0. The initial
results we pursue in Sec. II enable us to suggest an app
mate location for the escape parameter region in thep,v
plane for Eq.~1.1!. These results are then interpreted in S
III in the context of a particular application which arises
the smectic liquid-crystal literature involving a special a
proximation to a perturbation of a dynamic equation. T
work presented here therefore naturally extends the nonli
work for the parametrically excited pendulum cited abo
and is further illustrated by means of this application. N
merical determination of the escape regions for the ca
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discussed below remains to be investigated fully: it is
tended that these preliminary results will encourage fut
numerical work by providing guidance as to the location
the actual escape regions. An initial numerical investigat
for Eq. ~1.1! has been carried out recently by Clifford@8#
who has confirmed the location and accuracy to within t
or three decimal places of the boundary of the escape re
depicted in Fig. 1 below whena50.3 andv'2. The first
indications are that the full extent of the rich nonlinear b
havior available to solutions of this equation will requi
quite extensive and detailed numerical investigations wh
will be reported in future work.

II. HARMONIC BALANCE METHOD

We follow @2# and try to approximate the escape zo
boundary by means of identifying two bifurcations. As
@2,3#, it will be assumed that the symmetry-breaking bifu
cation derived below for the case of symmetric systems w
provide the locus of a curve in thep,v plane which is suf-
ficiently close to the actual escape region that it provides
good estimate for a bound on the location of part of t
escape parameter zone. Another bounding curve for the
cape zone is derived from considering a suitable subcrit
bifurcation: around the region of interest it will turn out to b
reasonably approximated by the bifurcation curves wh
arise in the linearized Mathieu equation version of Eq.~1.1!
after a comparison with the usual vertical tangency condit
discussed below. The escape zone ought to be bounde
these curves in thep,v plane, as discussed in@2,3#.

The harmonic balance method@9# is commonly used in
most of the references cited above and is adopted here so
a solution of the form

f~ t !5f01A cos@n~vt1b!# ~2.1!

is assumed, wheren5 1
2 corresponds to the primary unstab

zone aroundv52 for the linearized Mathieu equation form
of Eq. ~1.1!. For ease of notation, set

T5 1
2 ~vt1b!. ~2.2!
4856 ©2000 The American Physical Society
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Inserting Eq.~2.1! into Eq. ~1.1! and using the identities
@@10#, p. 361#

cos~x cosy!5J0~x!12(
n51

`

~21!nJ2n~x!cos~2ny!,

~2.3!
s
to

ul
a-
s
a

tio
e

sin~x cosy!52(
n51

`

~21!n11J2n21~x!cos@~2n21!y#,

~2.4!

where Jn denotes the Bessel function of the first kind
ordern, gives
1
4 v2A cosT1vjA sinT5@11p cos~2T!cosb1p sin~2T!sinb#Fsinf0H J0~A!12(

n51

`

~21!nJ2n~A!cos~2nT!J
1cosf0H 2(

n51

`

~21!n11J2n21~A!cos@~2n21!T#J G1a@11p cos~2T!cosb1p sin~2T!sinb#

3Fsin~2f0!H J0~2A!12(
n51

`

~21!nJ2n~2A!cos~2nT!J
1cos~2f0!H 2(

n51

`

~21!n11J2n21~2A!cos@~2n21!T#J G . ~2.5!
nd

ues

ted
alue
Following the procedure in@2#, we collect together the term
involving cosT, sinT, and constants, and equate them
zero, ignoring the sinusoidal contributions from higher m
tiples of T. After some straightforward algebraic manipul
tions ~involving trigonometric formulas for products of sine
and cosines! this procedure leads to the following three equ
tions:

1
4 Av22p cosb$cosf0@J1~A!2J3~A!#

1a cos~2f0!@J1~2A!2J3~2A!#%

22@cosf0J1~A!1a cos~2f0!J1~2A!#50,

~2.6!

vjA2p sinb$cosf0@J1~A!1J3~A!#

1a cos~2f0!@J1~2A!1J3~2A!#%50, ~2.7!

sinf0$J0~A!2p cosbJ2~A!%

1a sin~2f0!$J0~2A!2p cosbJ2~2A!%50.

~2.8!

These equations are analogous extensions to equa
(3a,b,c) in @2# and indeed collapse to these equations wh
a is set to zero.

Equation~2.8! can be split into the symmetric solution

sinf050, ~2.9!

and, assumingf0'0, an asymmetric solution

J0~A!2p cosbJ2~A!12a$J0~2A!2p cosbJ2~2A!%50.
~2.10!
-

-

ns
n

For the symmetric solutionf050, Eqs.~2.6! and ~2.7! can
be suitably squared to eliminate the constantb, resulting in
the relevant symmetric equation given by

@ 1
4 Av222$J1~A!1aJ1~2A!%#21~vAj̄ !2

2p2@J1~A!2J3~A!1a$J1~2A!2J3~2A!%#250,

~2.11!

where

j̄5j
@J1~A!2J3~A!1a$J1~2A!2J3~2A!%#

@J1~A!1J3~A!1a$J1~2A!1J3~2A!%#
. ~2.12!

For smallb'0 ~corresponding to light damping! the asym-
metric equation~2.10! reduces to

p5
J0~A!12aJ0~2A!

J2~A!12aJ2~2A!
. ~2.13!

The symmetry-breaking bifurcation in thev, p plane can
now be obtained by numerically solving the symmetric a
asymmetric equations~2.11! and ~2.13! simultaneously. We
first substitute Eq.~2.13! for p in Eq. ~2.11!, choose fixed
values ofj anda, and set a starting value forv in the vicinity
of v'2. Equation~2.11! is then solved numerically forA
using a Newton-Raphson method initiated atA51. The re-
sulting value forA is then inserted into Eq.~2.13! to deter-
mine the corresponding value ofp for the original starting
valuev. This procedure is repeated through a range of val
for v and the resulting points~v,p! provide the locus of the
symmetry-breaking bifurcation curve in thev, p plane for
the chosen values of the constantsj anda. For eacha, if j is
fixed, the curve forms one approximation for an expec
lower bound to the escape region corresponding to the v
of a. Examples of these curves are given in Fig. 1~labeled on
the right of the figure byS! for the case whenj50.05 anda
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FIG. 1. The symmetry-breaking bifurcatio
curvesS and the corresponding subcritical bifu
cation curvesH obtained by the harmonic bal
ance method. The constanta takes the indicated
values whilej is set to 0.05 to allow a compari
son with the results in Ref.@2# for thea50 case.
The escape region for eacha is expected to be
located above the relevant intersecting curves.
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takes the indicated values; thea50 case coincides with the
symmetry-breaking curve depicted in@2#.

The subcritical bifurcation is determined by the usual v
tical tangency condition wheredA/dv5`. If the left-hand
side of Eq. ~2.11! is defined to be the functionf then
dA/dv52 f v / f A in terms of the partial derivatives off. The
standard series representations for Bessel functions@10# can
be used to expandf (A,v) aroundA50. In this case, Eq.
~2.11! can be expressed as

f ~A,v!5A2$@ 1
4 v22~112a!#21v2j22 1

4 p2~112a!2%

1O~A4!50. ~2.14!

Hence, for smallA,

dA

dv
52

f v

f A

5
2 1

2 Av@ 1
4 v22~112a!12j2#

@ 1
4 v22~112a!#21v2j22 1

4 p2~112a!2
1O~A3!.

~2.15!

HencedA/dv5` whenever

@ 1
4 v22~112a!#21v2j22 1

4 p2~112a!250. ~2.16!

This equation is expected to provide a reasonable appr
mation to another lower bound for the escape region; it
also be obtained by considering the linearized version of
~1.1! in the form of the Mathieu equation~see for example
@@11#, p. 260# whenv and the other constants are approp
ately redefined!. Examples of these curves appear in Fig
~labeled to the left of the figure byH! for j50.05 and the
indicated values ofa. For each given value ofa the corre-
spondingH and S curves combined as in Fig. 1 form goo
approximate lower bounds for the anticipated escape re
in the v, p plane: this is certainly the case fora50 as dis-
cussed by Clifford and Bishop@2#.
-

i-
n
q.

-

n

III. APPLICATION

An application of the results derived above may be ma
for Eq. ~2.10! in the paper by Stewart, Carlsson, and Les
@12#,

B3fzz22l5f t2e0eaE0
2~sina cosu

1cosa sinu cosf!cosa sinu sinf50. ~3.1!

This, and similar equations with sine terms, may be fou
throughout the smectic-C liquid-crystal literature~see Cladis
and van Saarloos@13#, Schiller, Pelzl, and Demus@14#, the
work contained in Maclennan, Clark, and Handschy@15# and
the references in@1#!. Smectic liquid crystals are layere
anisotropic fluids, the physics of which can be found in gr
detail in the book by de Gennes and Prost@16#. The average
molecular alignment in a liquid crystal is described by t
unit vector n, commonly called the director. Heref
5f(z,t) is the orientation angle of the usualc director
which, by the physics of smecticC @16#, allows a complete
description of the directorn within any smectic-C liquid-
crystal sample. The quantityB3.0 is an elastic constant an
l5.0 is a smectic viscosity coefficient. The electric fie
E5E0(cosa,0,sina) makes a constant anglea relative to
the equidistant planes of the smectic layers aligned para
with the xy plane. The fixed smectic tilt angleu is the angle
the directorn makes relative to the layer normal~0, 0, 1!.
The magnitude of the electric field isE0 ,e0 is the~positive!
permittivity of free space andea is the dielectric anisotropy
of the liquid crystal, which may be positive or negativ
Equation~3.1! has been derived in@12# from the nonlinear
continuum theory for smectic-C liquid crystals developed by
Leslie, Stewart, and Nakagawa@17#.

For ea.0 andE0 set to a constant value there is a we
known traveling wave solution to Eq.~3.1!, namely@1,12–
15#,

f~z,t !52 arctan@exp~bt!#, ~3.2!

where

b5E0~e0ea!1/2B3
21/2cosa sinu, ~3.3!
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t5z2ct2z0 , ~3.4!

c5 1
2 E0~B3e0ea!1/2l5

21 sina cosu, ~3.5!

with z0 being an arbitrary constant. The solutionf(z,t) trav-
els fromp to 0 ast increases. This form of solution occu
frequently and has been exploited and developed on var
occasions in the context of smectic liquid crystals@18,19#.

To investigate the behavior whenE05E0(t) we suppose
that for some positive constantE0

E0~ t !5E0@11 1
2 e cos~vt !# 0,e!1. ~3.6!

This models a perturbation to the constant electric field c
via a static field which is augmented by a small amplitu
oscillating field;v is the frequency of the superimposed fie
ande is a small parameter. Given the form of Eq.~3.6! it is
observed that@12#

e cos~vt !'e cosS v

c
t D , ~3.7!

whenever

uz2z0u
v

c
,e, ~3.8!

that is, whenever the solution is investigated sufficiently n
any initially chosen arbitrary pointz0 . For a given range of
values forv it can always be ensured that the inequality
Eq. ~3.8! holds: we are principally interested in the larget
behavior. Consequently, we may consider

E0
2~ t !'E0

2F11e cosS v

c
t D G . ~3.9!

Motivated by the traveling wave solution~3.2! to Eq. ~3.1!
and the general form of the equation discussed in Sec. II
suppose that for electric fields satisfying the approximati
in Eq. ~3.9! we can choose to examine solutions of the ty

f5f̂~dt!1p, ~3.10!

d5bAtana cotu, ~3.11!

whereb and t are defined as above in Eqs.~3.3! and ~3.4!.
Substituting equations~3.9! and ~3.10! into Eq. ~3.1! gives

f̂tt12jf̂t1@11e cos~v̄t!#@sinf̂1a sin~2f̂ !#50,
~3.12!

where, for notational convenience,

j5 1
2 Atana cotu, ~3.13!

v̄5
v

c
, ~3.14!

a52 1
2 cota tanu52 1

8 j22. ~3.15!

The variablev̄ involves many of the problem-depende
constant parameters viac defined in Eq.~3.5!, including the
magnitude of the static electric field contribution. For a giv
us

e
e

r

e
s

e

physical situation,a and u are chosen known fixed param
eters while the electric field can be varied. This means t
varying the frequency and magnitude of the electric fie
contributions can be accommodated by only needing to c
sider the effect of varyingv̄ ande. Equation~3.12! is of the
same form as Eq.~1.1! with e ~the magnitude of the oscillat
ing field contribution! playing the roˆle of p.

For ea,0 it can be supposed again that a solution sim
to Eq. ~3.10! may be appropriate wheneÞ0, given the re-
sults above forea.0. We suppose in this case that

f5f̂~dt!, ~3.16!

with d again given by Eq.~3.11!, except that in this case w
replaceea in Eqs. ~3.3! and ~3.5! by 2ea.0. Setting Eq.
~3.16! into Eq. ~1.1! gives Eq.~3.12! as before withj andv̄
as defined in Eqs.~3.13! and ~3.14! but with a replaced by

a5 1
2 cota tanu5 1

8 j22. ~3.17!

From the preceding paragraphs we are now in a posi
to employ Eq.~3.12! and the results of Sec. II fora,0 and
a.0 corresponding to the casesea.0 and ea,0, respec-
tively. In both cases,a andj are related to each other by Eq
~3.17! and ~3.15!. For illustrative examples we conside
graphs in thev̄,e plane whena is set to some particula
negative or positive values. The method used to obtain Fi
can be repeated to obtain Fig. 2 below for Eq.~3.12!, the
main difference being the dependence ofj upona. The plots
in Fig. 2 have been calculated for the bifurcation curves
the v̄,e plane for the valuesa520.1, 0.3, 0.5, and 0.7, in
order that the values forj remain relatively small: the ap
proximate correspondingj values are 1.118, 0.645, 0.5, an
0.425, respectively. Numerical evidence tends to suggest
the curves remain similar in form to those in Fig. 1 provid
uau,uju&0.75. As in Fig. 1, the symmetry-breaking bifurc
tion curves are labeledS and the subcritical bifurcation
curves are labeledH. For a520.1 it is seen from the figure
that the upper of the two corresponding curves is the s
critical bifurcation curve, extended further to the right ofv̄
52 than in Fig. 1; this curve lies above the symmetr
breaking bifurcation curve which, unlike Fig. 1, does n
intersect the subcritical bifurcation curve for 1<v<3.5.
There is a similar scenario for thea50.3 case in Fig. 2. This
is due toj being much larger than the value considered
Fig. 1. However, fora50.5 and 0.7,j becomes smaller and
the symmetry-breaking and subcritical bifurcation curves
tersect as shown in Fig. 2 in a similar way to those display
in Fig. 1. It is anticipated that any escape region will
located above these curves in thev̄,e plane.

From Fig. 2 it can be seen that escape behavior ought
to be expected for 0<e&1 for the given ranges ofa. Nev-
ertheless, this does not preclude the existence of trans
chaos. This is certainly the case for some nonlinear oscilla
equations where, for example, a Melnikov-type analysis
reveal a further boundary, the Melnikov curve, in thev̄,e
plane which lies below the symmetry-breaking and subcr
cal bifurcation curves; transient chaos may occur for para
eters in the region above the Melnikov curve. Some
amples of this behavior can be found in the review paper
Szemplinska-Stupnicka@20#. Melnikov boundaries were de
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FIG. 2. The symmetry-breaking bifurcatio
curvesS and the corresponding subcritical bifu
cation curvesH, obtained by the harmonic bal
ance method for Eq.~3.12!. The parametersa and
j are linked according to Eq.~3.15! when a,0
and to Eq.~3.17! when a.0. As in Fig. 1, the
escape region is always expected to be loca
above the relevant curves.
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termined by Stewartet al. @12# for a slightly different form
of perturbation to Eq.~3.1! and its known traveling-wave
solution ~3.2!. As a result of the differences between the
perturbations, a direct comparison of the results in@12# with
those presented here is not feasible, although both se
results qualitatively agree that complex nonlinear behavio
to be anticipated ase increases, that is, as the magnitude
the oscillating electric field contribution increases. This
similar to the situation for various types of nonlinear osc
lators subjected to a driving periodic force such asF cos(vt):
complex behavior patterns can emerge asF increases leading
to chaos and/or escape regions in thev, F plane ~see, for
example, Fig. 10 in@20#!. The choice of perturbation intro
duced here has the advantage over that in@12# of having
fewer assumptions imposed upon the proposed solution.
techniques used in this present paper are therefore more
eral in relation to Eq.~3.1! despite the rather basic approx
mations in Eqs.~3.6!–~3.9! used for the special perturbatio
to the known traveling-wave solution described here and
hoped that this simple example will encourage more ext
sive numerical analysis of Eq.~1.1! than is currently avail-
able in the literature.

IV. CONCLUSIONS

The theory and results expounded by Clifford and Bish
@2# for the case of equation~1.1! with j.0 fixed anda50
have been extended in Sec. II to incorporate an additio
sinusoidal term whenaÞ0. A general method has been in
troduced to produce symmetry-breaking and subcritical
furcation curves in thev,e plane around the primary unstab
zone nearv'2. Examples for various values ofa are dis-
played in Fig. 1 forj50.05. These intersecting curves, f
eacha, represent lower bounds on the location of any ant
pated escape parameter region in thev,e plane. The specia
case ofa50 coincides with the results in@2#.
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The motivation for investigating equation~1.1! when a
Þ0 arises from a well-known dynamic equation from t
smectic liquid-crystal literature, namely, Eq.~3.1!. This
equation has a double sine-Gordon-type nonlinearity en
ing through two sinusoidal terms. In Sec. III a special p
turbation to this equation involving an oscillating electr
field term led, by means of some basic approximations
assumptions introduced in Eqs.~3.6!–~3.9!, to Eq. ~3.12!
which then allowed a direct application of the theory deriv
in Sec. II. The resulting bifurcation curves are plotted in F
2. For this particular applicationj anda are related to each
other via Eqs.~3.15! and~3.17!, depending upon the sign o
the constant dielectric anisotropyea of the liquid-crystal ma-
terial ~which could be either positive or negative@16#!. The
results clearly have an impact upon the interpretation of
orientation of thec director ~and hence the average molec
lar alignment denoted by the usual directorn! in smectic
liquid crystals via the phase anglef, especially when the
possibility of large-time chaotic behavior may be present
parameters lying within the escape zones. These results
liquid crystals bear some resemblance to those for nonlin
oscillators with a periodic driving force@20#, as mentioned
briefly in Sec. III. Further, the application of the results pr
sented here in Sec. III agrees qualitatively with those p
sented elsewhere@12# for Eq. ~3.1! whenE0 is given by Eq.
~3.6! in that as the amplitude of the oscillatory field cont
bution increases, there is an increased opportunity for c
plex nonlinear behavior.

The preliminary results presented here will hopefu
stimulate interest in carrying out more detailed numeri
work in an attempt to more accurately locate the escape
gions for Eq.~1.1!. The boundary curves presented here w
guide numerical experiments by giving appropriate areas
the frequency and amplitude parameter space for invest
tions to begin.
@1# I. W. Stewart, IMA J. Appl. Math.61, 47 ~1998!.
@2# M. J. Clifford and S. R. Bishop, J. Sound Vib.172, 572

~1994!.
@3# D. Capecchi and S. R. Bishop, Dyn. Stability Systems9, 123
~1994!.

@4# M. J. Clifford and S. R. Bishop, Phys. Lett. A184, 57 ~1993!.



t.

. E

PRE 62 4861ESTIMATING THE ESCAPE ZONE FOR A . . .
@5# S. R. Bishop and M. J. Clifford, Eur. J. Mech. A/Solids13,
581 ~1994!.

@6# S. R. Bishop and M. J. Clifford, Chaos, Solitons Fractals7,
1537 ~1996!.

@7# S. R. Bishop and M. J. Clifford, J. Sound Vib.189, 142
~1996!.

@8# M. J. Clifford ~private communication!.
@9# A. H. Nayfeh and D. T. Mook,Non-Linear Oscillations

~Wiley, New York, 1979!.
@10# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun~Dover, New York, 1970!.
@11# D. W. Jordan and P. Smith,Nonlinear Ordinary Differential

Equations, 2nd ed.~Clarendon, Oxford, 1987!.
@12# I. W. Stewart, T. Carlsson, and F. M. Leslie, Phys. Rev. E49,

2130 ~1994!.
@13# P. E. Cladis and W. van Saarloos, inSolitons in Liquid Crys-
tals, edited by L. Lam and J. Prost~Springer-Verlag, New
York, 1992!, pp. 110–150.

@14# P. Schiller, G. Pelzl, and D. Demus, Liq. Cryst.2, 21 ~1987!.
@15# J. E. Maclennan, N. A. Clark, and M. A. Handschy, inSolitons

in Liquid Crystals, edited by L. Lam and J. Prost~Springer-
Verlag, New York, 1992!, pp. 151–190.

@16# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals
~Clarendon, Oxford, 1993!.

@17# F. M. Leslie, I. W. Stewart, and M. Nakagawa, Mol. Crys
Liq. Cryst. 198, 443 ~1991!.

@18# W. van Saarloos, M. van Hecke, and R. Holyst, Phys. Rev
52, 1773~1995!.

@19# I. W. Stewart, Phys. Rev. E57, 5626~1998!.
@20# W. Szemplinska-Stupnicka, Nonlinear Dyn.7, 129 ~1995!.


